
NASA Contractor Report 181614

ICASE REPORT NO. 88-5

ICASE
IMPLEMENTATION AND A N A L Y S I S OF A NAVIER-

STOKES ALGORITHM ON PARALLEL COMPUTERS

b a d A. Fatoohi

Chester E. Grosch

(AASA-CR-1816 14) I t E L E f l E C ! I B I l C b ANI; H88- 1 83 0 1
BPALYSXS OF A BIYIEE-STCKES 8 1 G C B 3 ' 2 6 f l C B
€&BALLEL CCRPBZfLPS P i a a l BeFcEt (NASA)
5;: p CSCL 09B Unclas

G3/61 0128104

Contract No. NAS1-18107
January 1988

INSTITUTE FOB COMPUTER APPLICATIO#S IN SCfBNCE Idlc-Bfm
NASA Laagley Rerearch Center, Hamptou, Vir-- 23665

Operated by the Unlverritler Sp8uo b a u r q k &roclation

c

IMPLEMENTATION AND ANALYSIS OF A NAVIER-STOKES ALGORITHM

ON PARALLEL COMPUTERS

Raad A. Fatoohi and Chester E . Grosch

Abstract

This paper presents the results of the implementation of a Navier-Stokes algorithm on three

parallelhector computers. The object of this research is to determine how well, or poorly, a single

numerical algorithm would map onto three different architectures. The algorithm is a compact

difference scheme for the solution of the incompressible, two-dimensional, time dependent Navier-

Stokes equations. The computers were chosen so as to encompass a variety of architectures. They

are: the MPP, an SIMD machine with 16K bit serial processors; Fled32, an MIMD machine with

20 processors; and Cray/2. The implementation of the algorithm is discussed in relation to these

architectures and measures of the performance on each machine are given. The basic comparison

is among SIMD instruction parallelism on the MPP, MIMD process parallelism on the Fled32, and

vectorization of a serial code on the Cray/2. Simple performance models are used to describe the

performance. These models highlight the bottlenecks and limiting factors for this algorithm on

these architectures. Finally conclusions are presented.

The first author is currently with Sterling Software, Inc., Palo Alto, CA 94303, under contract
to the Numerical Aerodynamic Simulation Systems Division at NASA Ames Research Center,
Moffett Field, CA 94035. The second author is with Old Dominion University, Norfolk, VA
23508. This research was performed under NASA Contract No. NASI-18107 while the authors
were in residence at ICASE, NASA Langley Research Center, Hampton, VA 23665.

i

1

I. Introduction

Over the past few years a significant number of parallel computers have been built. Some of

these have been one of a kind research engines, others are offered commercially. Both SIMD and

MIMD architectures are included. A major problem now facing the computing community is to

understand how to use these various machines most effectively. Theoretical studies of this question

are valuable [ll], 1131. However, we believe that comparative studies, wherein the same algorithm

is implemented on a number of different architectures, provide an equally valid way to this under-

standing. These studies, carried out for a wide variety of algorithms and architectures, can

highlight those features of the architectures and algorithms which make them suitable for high per-

formance parallel processing. They can exhibit the detailed features of an architecture and/or algo-

rithm which can be bottlenecks and which may be overlooked in theoretical studies. The success

of this approach depends on choosing "significant" algorithms for implementation and carrying out

the implementation over a wide spectrum of architectures. If the algorithm is trivial or embarrass-

ingly parallel it will fit any architecture very well. We need to use algorithms which solve hard

problems which are attacked in the scientific and engineering community.

In this paper we present the results of the implementation of an algorithm for the numerical

solution of the Navier-Stokes equations, a set of nonlinear partial differential equations. In detail,

the algorithm is a compact difference scheme for the numerical solution of the incompressible, two

dimensional, time dependent Navier-Stokes equations. The implementation of the algorithm

requires the setting of initial conditions, boundary conditions at each time step, time stepping the

field, and checking for convergence at each time step. Equally important to the choice of algorithm

is the choice of parallel computers. We have chosen to work on a set of machines which encom-

pass a variety of architectures. They are: the MPP, an SIMD machine with 16K bit serial proces-

sors; Flex/32, an MIMD machine with 20 processors; and Cray/2. In this paper we briefly describe

the architecture of each of these computers. We also describe the programming languages which

we used to implement the Navier-Stokes algorithm because the efficiency, or lack of it, of the

2

software can be as important as the computer architecture in determining the success or failure of

the implementation. The basic comparison which we make is among SIMD instruction parallelism

on the MPP, MlMD process parallelism on the Flexf32, and vectonzation of a serial code on the

Crayn. The implementation is discussed in relation to these architectures and measures of the per-

formance of the algorithm on each machine are given. In order to understand the performances on

the various machines simple performance models are developed to describe how this algorithm, and

others, behave on these computers. These models highlight the bottlenecks and limiting factors for

algorithms of this class on these architectures. In the last section of this paper we present a

number of conclusions.

3

II. The numerical algorithm
I -

~

The Navier-Stokes equations for the two-dimensional, time dependent flow of a viscous

incompressible fluid may be written, in dimensionless variables, as:

aU av
ax ay + - = 0, -

a 1 2L + -%u 6) + -(v 6) = - v 2 6,
at ax aY Re (2.3)

where it’= (u,v) is the velocity, C, is the vorticity and Re is the Reynolds number.

The numerical algorithm used to solve equations (2.1) to (2.3) was h t described by Gatski,

et al. [7]. This algorithm is based on the compact differencing schemes which require the use of

only the values of the dependent variables in and on the boundaries of a single computational cell.

Grosch [91 adapted the Navier-Stokes code to ICL-DAP. Fatoohi and Grosch [4] solved equations

(2.1) and (2.2), the Cauchy-Riemann equations, on parallel computers. The algorithm is briefly

described here.

Consider the problem of approximating the solution of equations (2.1) to (2.3) in the square

domain 0 5 x 5 1, 0 5 y I 1 with the boundary conditions u = 1 and v = 0 at y = 1 and u = v = 0

elsewhere. Subdivide the computational domain into rectangular cells. Fig. 1 shows a typical cell

and the location of the variables on that cell where U i j E u (iAx, jAy) , for i = 1, 2, . . , N,

j = 1 , 2 , - . * , M. Define the centered difference and average operators on a cell by:

W i j E (ui+1/2j - Ui-l/zj) 1 AX,

I W i j E (U i + l / ~ j + Ui-112j 11 2.

(2.4)

(2.5)

Suppose that <i+l,2+1,2 is prescribed. Then equations (2.1) to (2.2) are approximated by,

4

I I
i+l R

Fig. 1. Typical computational cell and the data associated with it.

5

~ V i + 1 / 2 & 1 / 2 - P ~ V ~ + I I Z) ~ I / Z = 0. (2.9)

The adaptation of this algorithm to different parallel architectures can be simplified by the

introduction of box variables to represent j. The center of a cell is at (i+1/2j+1/2). The box vari-

ables, E are defined at the comers of the cells, as shown in Fig. 1. They are related to r f by:

+ it,,, = (Pi&l + E j) / 2, (2.10)

ghlnj = (f i + l j + f i j) I 2,

and similarly for a+l j+ln and rf+lnhl.

(2.1 1)

It is easy to see that equations (2.8) and (2.9) are satisfied identically for any set of box vari-

ables. For the cell (i+1/2&1/2), equations (2.6) and (2.7) become,

AF=z

where
(2.12)

-x i j 1 & j -1 & j -1 -hij' I -1 i j -1 hi j -1 & j 1 -kj 1
A = [1

- 3 + +
F = (Pij 9 Pi+l j t Pi+1&1 9 Pij+l I"',

Z = (0 9 2(A~)iCi+1/2)t10) 9

p . . = (p . . I J 9 Q..) I J 9

hij E (AJJ)~ I (AX),.

r

+
' J

Equation (2.12) is solved by an iteration scheme which was originally proposed by Kacvnan

[12]. If f i k) is the value after the k'th iteration, then the residual after the k'th iteration, R('), is

given by:

(2.13)

F(k1) = f i k) - &r(f iT) - lR(k) , (2.14)

where o is an acceleration parameter. This relaxation scheme is equivalent to an SOR method.

The compact difference approximation to equation (2.3) results in an implicit set of equations

which are solved by an AD1 method. This method consists of two half steps to advance the solu-

6

tion one full step in time. Let At be the full time step and apply the forward difference operator to

equation (2.3) for the time derivative, giving

Applying the centered difference and centered second difference operators for the space derivatives,

for i = 1, 2, . . - , N; j = 1, 2, . . * , M. The vel city field is not &fin

in this scheme; however, it can be computed as follows:

1
aj = -(Gloj 2 + 8i-112j)-

Using equation (2.1 l), to get

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

d at the corners of the cells

(2.27)

7

1 - + - + g. ' = -(Pi+1 j + 2Pl j + Pi-1 j) . (2.28)

Equation (2.17) represents a set of M independent tridiagonal systems (one for each vertical line of

the domain) each of size N. Similarly, equation (2.18) represents a set of N independent tridiagonal

systems (one for each horizontal line of the domain) each of size M.

IJ 4

The AD1 method for equation (2.3) is applied to all interior points of the domain. The values

of c on the boundaries are computed using equation (2.2). On x = 0, for example, we have

(2.29)

but u = 0 at x = 0, SO (aU ay)x=o = o and

av
ax <r>,=o = (-)x=o. (2.30)

Assume that the length, Ax, of the first two cells bordering the boundary are equal and approximate

the derivative of v, to get

aV
ax (-) ~ = o = a o (v) X = o + a l (V)x=AI++2(v)x=261.

Using the Taylor series for v at x = Ax, 2Ax about x = 0, we get

(2.3 1)

(2.32)

Solving equation (2.32) for the unknowns ab al, a2, we have

(2.33)

The value of v on x = 0 is zero while its value on x = Ax, 2Ax is computed using equation (2.28).

1 (GIx = 0 = (& [-3 (v)x = 0 + 4 (V I , = & - (v), =
1 .

Similarly,

while

8

The key to the adaptation of the relaxation scheme for solving equations (2.1) and (2.2) to

parallel computers is the realization that each P'is updated four times in a sequential sweep over

the array of cells. For example, ZJ is changed during the relaxation of cell (i-1/2+1/2) first, then

of cell (i-1/2~+1/2), then cell (i+1/2&-1/2), and finally cell (i+1/2&1/2). This fact is utilized on

parallel computers by using the concept of reordering to achieve parallelism; operations are reor-

dered in order to increase the percentage of the computation that can be done in parallel. The

computational cells are divided into four sets of disjoint cells so that the cells of each set can be

processed in parallel. It is therefore clear that the cell iteration for the box variables is a four

"color" scheme. Also, different linear combinations of the residuals are used to update each ?and

all of the box variables are updated in each step. Thus the four steps are necessary for a complete

relaxation sweep.

The main issue in implementing the AD1 method for equation (2.3) on parallel computers is

choosing an efficient algorithm for the solution of tridiagonal systems. The selection of the algo-

rithm depends on the amount of hardware parallelism available on the computer, storage require-

ment, and some other factors. Two algorithms are considered here: Gaussian elimination and

cyclic elimination. These algorithms are described in the literature, see [5], [l l] for details. The

Gaussian elimination algorithm is based on an LU decomposition of the tridiagonal matrix. This

algorithm is inherently serial because of the recurrence relations in both stages of the algorithm.

However, if one is faced with solving a set of independent tridiagonal systems, then Gaussian elim-

ination will be the best algorithm to use on a parallel computer. This means that all systems of the

set are solved in parallel. In this case we obtain both the minimum number of operations and the

maximum parallelism. The cyclic elimination algorithm, also called odd-even elimination [lo], is a

variant of the cyclic reduction algorithm [l l] applying the reduction procedure to all of the equa-

tions and eliminating the back substitution phase of the algorithm. This makes cyclic elimination

most suitable for machines with a large natural parallelism, like the MPP.

I

~~~ 

9 

The solution procedure for the Navier-Stokes equations can be summerized as follows: 

Assume that c is zero everywhem at t = 0. The box variables for the relaxation pro- 

cess are initialized and their boundary values are computed. 

The vorticity at the comers of the domain is not defined in this scheme. These values 

are approximated using the values of their neighboring points. The values of Iji+ln~+ln 

are computed using the values of at the cornen of the cells. 

The relaxation process is implemented by computing the residuals, R('), using equation 

(2.13) for each set of cells, followed by updating the box variables using equation 

(2.14). This sequence must be completed four times in order to complete a sweep. 

Finally, the maximum residual is computed and tested against the convergence toler- 

ance. The whole process is repeated until the iteration procedure converges. 

The coefficients ay), up), j3!), @, $1, $) (equations (2.21) to (2.26)) for both passes 

of the AD1 method are computed. This includes computing ai, equation (2.28). 

The values of 6 on the boundaries, equations (2.33) to (2.36), are computed. 

Solving tridiagonal equations distributed over columns, equation (2.17). 

Solving tridiagonal equations distributed over rows, equation (2.18). 

These steps were implemented using the following subprograms: setbc, step (1); zcnlr, step (2); 

relard, step (3); cof, step (4); zbc, step (5); rriied, step (6); and rrijed, step (7). The repetition of 

steps (2) through (7) yields the values of the velocity and vorticity at any later time. 

! 



10 

111. Implementation on the MPP 

The Massively Parallel Processor (MPP) is a large-scale SIMD processor built by Goodyear 

Aerospace Co. for NASA Goddard Space Flight Center [l]. The MPP is a back-end processor for a 

VAX-l1/780 host, which supports its program development and VO needs. 

The MPP has three major units: the Array Unit (ARU), Array Control Unit (ACU), and stag- 

ing memory. The ARU is a square array of 128 x 128 bit-serial Processing Elements (PE’s). Each 

PE has a local 1024 bit random access memory and is connected to its four nearest neighbors with 

programmable edge connections. Arithmetic in each PE is performed in bit serial fashion using a 

serial-by-bit adder. The ACU supervises the PE array processing, performs scalar arithmetic, and 

shifts data across the PE array. The staging memory is a large scale data buffer that stores, per- 

mutes, and transfers data between external devices and the array. The h4PP has a cycle time of 

100 nsec. 

The MPP’s high level language is MPP Pascal [8]. It is a machine-dependent language 

which has evolved directly from the language Parallel Pascal which is an extended version of serial 

Pascal with a convenient syntax for specifying array operations. These extensions provide a paral- 

lel array data type for variables to be stored in the array memory and operations on these parallel 

arrays. 

The Navier-Stokes algorithm, described in section II, was implemented on the MPP using 

127 x 127 cells (128 x 128 grid points). The computational cells are mapped onto the array so that 

each comer of a cell corresponds to a processor. The storage pattern used on the MPP is to store 

cj, ~i+1,2al,2, and hij in the memory of the processor (ij). The seven subprograms required to 

implement this algorithm (see section 11) were written in MPP Pascal. These subprograms were 

executed entirely on the MPP; only the input and output routines were run on the VAX. 

The relaxation process, subprogram relard, was implemented on the array by computing the 

residuals and updating the box variables for each set of cells separately. This sequence must be 

completed four times in order to complete a sweep. The only difference between these sequences 



11 

is the assignment of the data in a particular processor memory to one of the four comers of a com- 

putational cell. This is done using temporary parallel arrays and boolean masks which also masks 

out boundary values. Each sweep is followed by the computation of the maximum residual. The 

whole step is repeated until the process converges. Note that in updating the box variables for each 

set only one forth of the processors do useful work. 

The AD1 method, subprograms triied and trijed, was implemented on the array by computing 

the forcing terms Fij and Gij, equations (2.19) and (2.20), and solving two sets of 128 tridiagonal 

systems, equations (2.17) and (2.18). The aidiagonal systems were solved by the cyclic elimination 

algorithm for all rows and all columns. This is done in parallel on the array with a ttidiagonal sys- 

tem of 128 equations being solved on each row or column. After solving each set of these systems, 

all points of the domain are updated except the boundary points. 

One of the problems in solving Navier-Stokes equations on the MPP is the size of the PE 

memory. The relaxation subprogram uses almost all of the 1024 bit PE memory; 22 parallel arrays 

of floating point numbers, all but 5 of which are temporary. Although the staging memory can be 

used as a backup memory, this causes an YO overhead and reduces the efficiency of the machine. 

This problem was solved by declaring all of the parallel arrays as global variables and using them 

by different procedures for more than one purpose. This means that temporary arrays were 

redefined in different parts of the code. Beside this hardware problem, there are problems in using 

MPP Pascal to perform vector operations and to extract elements of parallel arrays. Operations on 

vectors are performed on the MPP by expanding them to matrices and performing matrix opera- 

tions. This means that vector processing rate is 1/128 of that for mamx operations. MPP Pascal 

does not permit extracting an element of a parallel array on the MPP. This means that scalar 

operations involving elements of parallel arrays need to be expanded to matrix operations or they 

should be performed on the VAX. 

The relaxation subprogram is quite efficient; almost all of the operations are matrix opera- 

tions, no vector operations, only two scalar operations per iteration, and data transfers are only 



12 

- -  

setbc 

between nearest neighbors. The AD1 subprograms are reasonably efficient; mostly matrix opera- 

time (msec) time spent (%I rate (MFLOPS) 
0.587 0.00 84 

tions with few scalar operations and no vector operations. However, the cyclic elimination algo- 

zcnfr 
relaxd 

cof 
zbc 

triied 

rithm has some hidden defects. For each level of the elimination process, a set of data is shifted 

2.694 0.06 
15.265* 99.23 
1.933 0.05 
1.833 0.04 

12.717 0.3 1 

off the array and an equal set of zeros is shifted onto the array. Since all of the processors are exe- 

cuting the same instruction every cycle, some of these processors may not be doing useful work; 

trijed 12.725 0.3 1 125 
’ overall# 4 1.597 100.00 155 - 

here they are either multiplying by zero or adding a zero. This is a problem with many algorithms 

on SIMD machines. 

Table I contains the execution time for each subprogram of the Navier-Stokes algorithm, that 

for one iteration in the case of relard; the percentage of the total time spent in that subprogram; 

and the processing rate. The percentage of time spent in each subprogram determines which sub- 

programs are using the most time for a given run. It is clear, from Table I, that the majority of the 

time was spent in relard for this particular run. This is because the average time step requires 

about 270 iterations and the total time spent in the other subprograms ( rcnfr, cof, zbc, rriied. mjed 

) is only about the time to do two iterations of relard. The number of iterations in relard per time 

step depends on the particular data used during a given run. A different input data set could result 

in a smaller number of iterations per time step and relatively less time spent in the relaxation sub- 

program. 

Table 1. Measured execution time and processing rate of the Navier-Stokes subprograms for the 
128 x 128 problem on the MPP. 

I Subprogram I Execution I Percentage of I Processing I 

24 
156 
136 
1.1 
125 

* per iteration. 
# for ten time steps (execution time is in seconds for this row). 



13 

. The processing rates in Table I are determined by counting only the arithmetic operations 

which truly contribute to the solution. Scalar and vector operations which were implemented as 

matrix operations are counted as scalar and vector operations. This is the reason why the subpro- 

grams zbc and zcntr have low processing rates: zbc has only vector operations while zcntr has some 

scalar operations implemented as mauix operations. The subprogram serbc has mostly scalar and 

data assignment operations which reduce its processing rate. Beside these three subprograms, the 

processing rate ranges from 125 to 155 MFLOPS with an average rate of about 140 MFLDPS. 

In order to estimate the execution time of an algorithm on the MPP, the numbers of arith- 

metic and data transfer operations are counted and the cost of each operation is measured. This is 

illustrated in the following model. Only operations on parallel arrays are considered here. 

The execution time of an algorithm on the MPP, T, can be modeled as follows: 

Computation cost, 

Communication cost, 

Machine cycle time = 100 nanoseconds, 

Number of additions, 

Number of multiplications, 

Number of divisions, 

Number of shift operations, 

Number of steps involved in all shift operations, 



14 

C, Number of cycles to add two arrays of 32 bit floating point numbers, 

C,,, Number of cycles to multiply two arrays of 32 bit floating point numbers, 

C, Number of cycles to divide two arrays of 32 bit floating point numbers, 

C,, Startup cost (in cycles) of shifting an array of 32 bit floating point numbers, 

C,, Number of cycles to perform a one step shift within a shift operation. 

Table I1 contains the measured values of C,, C,,,, CSb and C,. These values were obtained by 

measuring the execution time of each operation using a loop of length 1OOO. 

Table 11. Measured execution times (in machine cycles) of the elementary operations on the MPP. 
Addition I Multiplication I Division I One step shift I k step shift 

965 I 811 I 1225 1 168 I 136+32k  

. 

Table 111 contains the operation counts per grid point for the Navier-Stokes subprograms on 

the MPP using the cyclic elimination algorithm for solving the tridiagonal systems. The arithmetic 

operations are counted in this table the way they were implemented; i.e., scalar and vector opera- 

tions (in zcntr and zbc) which were implemented as matrix operations are considered here as matrix 

operations. Table IV contains the estimated computation and communication times of the Navier- 

Stokes subprograms using equations (3.2) and (3.3) and Tables I1 and 111. The cost of scalar opera- 

tions is not included in this model; this explains the differences between the estimated and meas- 

ured times for sefbc and cof. Beside these two subprograms, the difference between the total 

estimated times and measured times ranges between 3% to 8% of the measured times. The amount 

of time spent on data transfers is quite modest for these subprograms; from 6% for reluxd to 25% 

for friied and rrijed. This is because the basic algorithm does not contain many data transfers and 

these transfers are only between nearest neighbors except for the tridiagonal solvers. 



15 

time 
0.300 
2.177 

13.592 
1.421 
1.540 
9.239 
9.239 

. 

time time time 
0.300 0.587 

0.348 2.525 2.694 
0.840 14.432 15.265 
0.134 1.555 1.933 
0.144 1.684 1.833 
3.043 12.283 12.7 17 
3.043 12.283 12.725 

zcntr 
relard* 

zbc 
triied 
trijed 

i 

cof 

* per iteration. 

15 
119 
8 
5 
30 
30 

9 
26 
8 
7 

45 
45 

4 
22 
22 

19 ' 42 
8 
8 

44 
44 

28 
84 
8 
11 

764 
7M 

Table N. Estimated times (in milliseconds) of the Navier-Stokes subprograms on the MPP. 
Subprogram 

setbc 
zcntr 

relaxd 

zbc 
triied 
trzjed 

cof 

Computation I Communication I Total estimated I Measured I 



16 

IV. Implementation on the Flex132 

The Flex/32 is an MIMD shared memory multiprocessor based on 32 bit National Semicon- 

ductor 32032 microprocessor and 32081 coprocessor [6]. The results presented here were obtained 

using the 20 processor machine that is now installed at NASA Langley Research Center. 

The machine has ten local buses; each connects two processors. These local buses are con- 

nected together and to the common memory by a common bus. The 2.25 Mbytes of the c o m n  

memory is accessible to all processors. Each processor contains 4 Mbytes of local memory. Each 

processor has a cycle time of 100 nsec. 

The UNIX operating system is resident in processors 1 and 2. These processors are also used 

for software development and for loading and booting the other processors. Processors 3 through 

20 run the Multicomputing Multitasking Operating System and are available for parallel processing. 

The Fled32 system software has a special concurrent version of Fortran 77. Concurrent For- 

tran comprises the standard Fortran 77 language and extensions that support concurrent processing. 

Among the constructs available for implementing parallel programs are: "shared", to identify vari- 

ables that are shared between processors; nprocessn, to define and s t a n  the execution of a process 

on a specified processor; "lock, to lock a shared variable if it is not locked by any other process; 

and "unlock, to release a locked variable. 

The Navier-Stokes algorithm, described in section 11, was implemented on the Fled32 using 

64 x 64 grid points (63 x 63 cells) and 128 x 128 grid points (127 x 127 cells). The main program 

as well as the seven subprograms of the algorithm were written in Concurrent Fortran. 

The parallel implementation of the Navier-Stokes algorithm is done by assigning a strip of 

the computational domain to a process and performing all the steps of the algorithm by each pro- 

cess. The main program performs only the input and output operations and creates and spawns the 

processes on specified processors. In our implementation, we used 1, 2, 4, 8, and 16 processors of 

the machine. The domain is decomposed first vertically for the first six subprograms of the algo- 

rithm ( setbc, zcntr, reluxd, cof, zbc, and triied ) and then horizontally for the subprogram trued. 

. 



17 

' 
For the first pass of the AD1 method, subprogram rriied, a set of tridiagonal equations comspond- 

ing to the vertical lines of the domain are solved while for the second pass of the method, subpro- 

gram trijed, a set of uidiagonal equations corresponding to the horizontal lines of the domain are 

solved. 

Data is stored in the common memory, in the local memory of each processor, or in both of 

them. For the relaxation subprogram, data corresponding to E,, &+lnpl,z, and hii for each saip 

are stored in the local memory while the interface points and the error dags are stored in the com- 

mon memory. A copy of the matrix Qi, is also stored in the common memory to be used in com- 

puting the matrix Vi j ,  equation (2.28). The vorticity at the comers of the cells (Li), the velocity 

field (Gi), and the coefficients of the tridiagonal equations (av, a$), #, pt), $1, and $1) are all 

stored in the common memory: this is required in order to implement the AD1 method. The forc- 

ing terms and the temporary matrices for the uidiagonal solvers are stored in the local memory of 

each processor. 

The relaxation scheme for each strip was implemented locally. After relaxing each set of 

cells, each process exchanges the values of the interface points with its two neighbors through the 

common memory. A set of flags are used here to ensure that the updated values of the interface 

points are used for the next set of cells. The tridiagonal equations were solved using the Gaussian 

elimination algorithm for both passes of the AD1 method. 

In order to satisfy data dependencies between segments of the code running many processes, 

a counter is used. This counter, which is a shared variable with a lock assigned to it, can be incre- 

mented by any process and be reset by only one process. It is implemented as a "barrier" where all 

processes pause when they reach it. A set of flags are also used, as described above, for synchroni- 

zation in the relaxation subprogram. 

Table V contains the speedups and efficiencies as functions of the number of processors for 

the 64 x 64 and 128 x 128 problems for two time steps. The measured execution times for ten 

time steps and processing rates for these problems using 16 processors are listed in Table VI. The 



18 

efficiency of the algorithm ranges from about 94%. for the 64 x 64 problem using 16 processors, to 

Number of 
Drocessors 

about 998, for the 128 x 128 using two processors. 

Table V .  Speedup and efficiency of the Navier-Stokes algorithm on the Fled32. 
64 x 64 points I 128 x 128 points 

s ~ e e d u ~  I efficiencv I S D ~ ~ U D  I efficiencv 

64x64  
128 x 128 

1.959 0.980 1.976 0.988 
3.893 0.973 3.941 0.985 
7.715 0.964 7.850 0.98 1 

16 15.027 0.939 15.483 0.968 

268.7 1 .w 
2587.1 1.13 

Table VI. Measured execution times for ten time steps and processing rates for the Navier-Stokes 
algorithm using 16 processors of the Fled32. 

1 Problem size krid ~ ~ i n t s )  I Execution time (sec) I Prmssinp: rate (MFLOPS) I 

The following performance model is based on estimating the values of various overheads 

resulting from running an algorithm on more than one processor. Also, the time to do the real 

computation on each processor is estimated. 

The execution time of an algorithm on p processors of the Fled32, T,,, can be modeled as 

follows: 

Tp = Tcmp + TO”, (4.1) 

where Temp is the computation time and Toyr is the overhead time. Let fu be a load distribution fac- 

tor where fu = 1 if the load is distributed evenly between the processors and fu > 1 if at least one 

processor has less work to do than the other processors. Then the computation time on p proces- 

sors can be computed by 

Tcmp =fid T t l  P9 

where TI is the computation time using a single processor. 

The overhead time can be modeled by: 



I 

Tsp Spawning time of p processes, 

Tcm Total common memory overhead time, 

Tv,, Total synchronization time. 

These times can be estimated as follows: 

19 

(4.3) 

T,, Total common memory access time, 

Tclm Total time required for copying shared vectors to local memory, 

Tcld Total time difference between storing vectors in common and local memories; i.e., Overhead 

time of storing vectors in common memory instead of local memory, 

tspn Time to spawn one process; a reasonable value is 13 msec, 

tick Total time to lock and unlock a shared variable; a reasonable value is 47 pec,  

f c ,  Time to access an element of a vector in common memory; a reasonable value is 6 psec, 

tl- Time to access an element of a vector in local memory; a reasonable value is 5 p e c ,  

kkt Number of times a shared variable is locked and unlocked for each process, 

kc, Number of times a shared vector is referenced, 



20 

k,,,,, Number of times a shared vector is copied to local memory, 

kcld Number of times a vector is stored in common memory instead of local memory, 

fk@) Bus contention factor. This contention results from having more than one processor trying 

to access the common memory at the same time; it is a function of p. 

The values of rrPm tkb rc,, and rh are estimated based on timing experiments performed by 

Bokhari [2] and Crockett [3]. It is assumed that all common memory access operations are per- 

formed on vectors of length n. 

The performance of the Navier-Stokes algorithm is heavily influenced by the performance of 

the relaxation subprogram; about 98% of the total time was spent in this subprogram for the two 

time step run. Since the number of cells is not divisible by the number of processors used, the last 

processor has less work to do than the other processors. Therefore, the load distribution factor, 

equation (4.2). can be computed by 

r 1 

(4.10) 

Using the performance model, equations (4.1) through (4.10), the overhead time represents at most 

5% of the execution time of the algorithm; this includes the impact of the load distribution factor 

on the computation time. The overhead time of the relaxation subprogram dominates the total 

overhead time. The values of kick and k,,, for each iteration of the relaxation process are 1 and 8. 

The spawning time has a minor impact on the overhead time because the processes are spawned 

only once during the lifetime of the program. The synchronization time is insignificant because the 

routines that provide the locking mechanism are very efficient and overlap with the memory access. 

The bus contention factor is very small even for a large number of processors. The common 

memory access time, TC- dominates the overhead time. The other components of the common 

memory overhead time, TCh and Tcu, have a negligible impact on the total overhead time because 

these operations are performed only once during every time step. 



21 

V. Implementation on the Cray/2 

The Cray/2 is an MIMD supercomputer with four Central Processing Units (CPU), a fore- 

ground processor which controls YO and a central memory. The central memory has 256 million 

64 bit words organized in four quadrants of 32 banks each. Each CPU has access to one quadrant 

during each clock cycle. Each CPU has an internal structure very similar to Crayll with the addi- 

tion of 16K words of local memory available for storage of vector and scalar data. The clock cycle 

is 4.1 nsec. 

The Navier-Stokes algorithm, described in section 11, was implemented on one processor of 

the Cray/2 using 64 x 64 and 128 x 128 grid points. The codes were written and run through the 

CFT/2 compiler. The reordered form of the relaxation scheme, the four color scheme, was imple- 

mented on the Cray/2 with no major modifications. The reordering process removes any recursion 

because each of the four sets (colors) contains disjoint cells. The two sets of the tridiagonal sys- 

tems were solved by the Gaussian elimination algorithm for all systems of each set in parallel. 

This was done by changing all variables of the algorithm into vectors running across the aidiagonal 

systems. The inner loops of all of the seven subprograms of the Navier-Stokes algorithm were 

fully vectorized. 

The use of the main memory can be reduced by using scalar temporaries, instead of array 

temporaries, within inner DO loops. When scalar temporaries are used the CFU2 compiler stores 

these variables in the local, rather than the main memory. This reduces memory conflicts and 

speeds up the calculation. The residuals in the relaxation process and the forcing terms in the AD1 

method are stored in the local memory. 

Table VI1 contains the execution time for each subprogram of the algorithm, the percentage 

of the total time spent in that subprogram, and the processing rate for the 64 x 64 and 128 x 128 

problems. As described in section III, most of the time was spent in reluxd. The average time step 

requires about 110 iterations for the 64 x 64 problem and about 270 iterations for the 128 x 128 

problem. The subprogram setbc has a low processing rate because it has mostly memory access 



22 

Subprogram 

setbc 
zcntr 

relard 
cof 
ZbC 

triied 

and scalar operations; however, this subprogram is called only once during the lifetime of the pro- 

gram. Beside this subprogram, the processing rate ranges from 57 to 97 MFLOPS with an average 

rate of about 70 MFLOPS for the subprograms of both problems. 

Table VU. Measured execution time and pmessing rate of the Navier-Stokes subprograms on the 

64 x 64 grid points 
Exec. time Perc. of Roc. rate 

(msec) time (%) (MFLOPS) 
0.480 0.02 25 
0.252 0.08 63 
2.7 19* 99.02 96 
0.720 0.24 85 
0.015 0.01 66 
1.007 0.33 57 

Exec. time 
(msec) 
1.65 1 
1.059 

11.001* 
3.036 
0.034 
4.014 
3.870 

30.286 

Perc. of Roc. rate 
time(%) (MFLOPS) 

0.0 1 29 
0.03 61 

99.60 97 
0.10 84 
0.00 59 
0.13 59 
0.13 62 

100.00 97 
rrijed 

overall# 

* per iteration. 
# for ten time steps (execution times are in seconds for this row). 

0.928 0.30 62 
3.048 100.00 96 

In order to estimate the cost of arithmetic and memory access operations on the Cray/2, the 

following timing values are used: 

Clock Period (CP) = 4.1 nanoseconds, 

Length of data path between the main memory and the registers, L, = 56 Cps, 

Length of each floating point functional unit, Lr = 23 CPs, 

Data transfer rate with stride of 1 through main memory, R ,  = 1 CP/word, 

Data transfer rate with stride of 2 through main memory, R2 = 2 CPs/word. 

A lower bound on the values of R1 and Rz is assumed here. Competition for memory banks from 

other processors causes a lower transfer rate and hence increased values of R, and R p  The actual 

values are difficult to estimate. 

Based on the fact that Cray vector operations are "stripmined in sections of 64 elements, the 

time required to perform arithmetic and memory access operations on vectors of length L ,  can be 



23 

Time to perform floating point operations on vectors with smde of 1, 

Time to perform floating point operations on vectors with smde of 2, 

Time to perform main memory access operations on vectors with stride of 1, 

Time to perform main memory access operations on vectors with stride of 2, 

Number of floating point operations on vectors with stride of 1, 

Number of floating point operations on vectors with stride of 2, 

Number of main memory access operations on vectors with stride of 1, 

Number of main memory access operations on vectors with stride of 2. 

Table VI11 contains the operation counts per grid point for the Navier-Stokes subprograms 

using the Gaussian elimination algorithm for solving the tridiagonal systems. These operations are 

performed on all grid points of the domain except for zbc where they are performed on vectors. 

Tables IX and X contain the estimated times of the Navier-Stokes subprograms for the 64 x 64 and 

128 x 128 problems. These times are obtained using equations (5.1) to (5.4) and Table VIII. The 

multiplication time includes the time required for division where it is assumed that each division 

takes three times the multiplication time. The main memory access time for each subprogram 

represents about 50% to 70% of the total estimated time and the measured time. This shows that 



24 

Subprogram Addition Multiplication Division Memory access 

the Cray/2 is a memory bandwidth bound machine; the CPU clock period is 4.1 nsec while the 

main memory cycle time is approximately 240 nsec. The impact of memory access time for relaxd 

is also contributed to the use of a memory stride of 2 which causes more than a 50% slowdown in 

data transfer rate; this is a consequence of the four CPU’s taking turns accessing the four quadrants 

of the main memory. The difference between the total estimated values and the measured values 

can be contributed to several reasons. Among these reasons are: the memory access and arithmetic 

operations can overlap, specially for large routines; the time to perform scalar operations is not 

included in this model; and there is up to 20% offset on the results depending on the memory 

traffic and the number of the active processes on the system 

1 setbc 
zcntr 

relax8 
cof 

zbc# 
triied 
rriied 

1 1 1 9 
3 1 5 

46 20 35 
8 8 16 
5 7 4 20 
6 7 2 17 
6 7 2 17 

* per iteration. 
# vector operations. 

Subprogram 

serbc 

relaxd 
cof 
zbc 

rriied 
rrijed 

zcnrr 

Table R. Estimated and measured execution times (in milliseconds) of the Navier-Stokes subpro- 
grams for the 64 x 64 problem on one processor of the Cray/2. 

Memory 
access time 
0.277 
0.154 
1.783 
0.480 
0.010 
0.510 
0.510 

Multiplication 
time 
0.089 
0.022 
0.55 1 
0.173 
0.006 
0.28 1 
0.28 1 

Addition 
time 

0.022 
0.067 
1.206 
0.173 
0.002 
0.130 
0.130 

Total estimated 
time 
0.388 
0.243 
3.540 
0.826 
0.018 
0.92 1 
0.92 1 

Measured 

0.480 
0.252 
2.719 
0.720 
0.015 

0.928 



i 

i -  
Subprogram 

setbc 
rcntr 
relaxd 

cof 
rbc 

triied 
trijed 

I -  
Memory Addition Multiplication Total estimated 

access time time time time 
1.120 0.090 0.360 1.570 
0.622 0.270 0.090 0.982 
7.218 4.144 1.802 13.164 
1.967 0.711 0.7 1 1 3.389 
0.019 0.004 0.013 0.036 
2.090 0.533 1.155 3.778 
2.090 0.533 1.155 3.778 

25 

Tuble X .  Estimated and measured execution times (in milliseconds) of the Navier-Stokes subpro- 

Measured 
time 
1.651 
1.059 

11.001 
3.036 
0.034 
4.014 
3.870 



26 

VI. Comparisons and Concluding Remarks 

There are a number of measures that one can use to compare the performance of these paral- 

lel computers using a particular algorithm. One is the processing rate and another is the execution 

time (see Tables I, VI, and VII). However it must be borne in mind that both of these measures 

depend on the architectures of the computers, the overhead required to adapt the algorithm to the 

architecture, and the technology, that is, the intrinsic processing power of each of the computers. 

If we consider a single problem, a ten time step run of the Navier-Stokes algorithm on a 

128 x 128 grid, then the processing rate is a maximum for the MPP, 155 MFLOPS, compared to 97 

MFLOPS for the CrayR, and only 1.13 MFLOPS on 16 processors of the Fled32. The low pro- 

cessing rate of the algorithm on the 16 processors of the Fled32 is simply due to the fact that the 

National Semiconductor 32032 microprocessor and 32081 coprocessor are not very powerful. 

Although the algorithm has higher performance rate on the MPP than on the Cray/2, it takes less 

time to solve the problem on the Cray/2 than on the MPP. This is due to the algorithm overhead 

involved in adapting the method to the MPP. As shown in Tables In and VIII, each iteration of 

the relaxation process has 145 arithmetic operations per grid point on the MPP compared to 66 

operations per grid point on the Cray/2. Also, the cyclic elimination algorithm, used to solve tridi- 

agonal systems on the MPP, has 97 arithmetic operations per grid point while the Gaussian elimina- 

tion algorithm, used on the Cray/2, has only 15 operations per grid point. 

The implementation of the algorithm on the Fled32 has the same number of arithmetic 

operations per grid point as on the Cray/2; there is only a reordering of the calculations and no 

additional arithmetic operations in the overhead. The algorithmic overhead for the Fled32 version 

is the cost of exchanging the values of the interface points and setting the synchronization counters 

for the relaxation scheme and accessing the common memory for the AD1 method. This means 

that the code on each processor is the serial code plus the overhead code. When the code is run on 

one processor, it is just the serial code with the overhead portion removed. 



27 

Another measure of performance is the number of machine cycles required to solve a prob- 

lem. This measure reduces the impact of technology on the performance of the machine. For the 

128 x 128 problem, for example, the ten time step run requires about 416 billion cycles on the 

MF'P, 7387 billion cycles on the CrayI2, and 25871 billion cycles on 16 processors of the Fled32. 

This means that the MPP outperformed the Cray/2, by a factor of 18, and the latter outperformed 

the Flex/32, by a factor of 3.5, in this measure. This also means that one processor of the CrayL2 

outperformed 16 processors of the Fled32 even if we assume that both machines have the same 

clock cycle. The problem with the Fled32 is that, although each processor has a cycle time of 100 

nsec, the memories (local and common) have access times of about 1 wec. 

One simple comparison between the MPP and Cray/2 is the time to pedorm a single arith- 

metic operation using the models developed in sections I11 and V. Using equation (5.1), the time 

to perform a single floating point operation (addition or multiplication) on an array of size 

128 x 128 elements on the Cray/2, excluding the memory access cost, is 91.3 psec. The time to 

perform the same operation on the MPP using MPP Pascal, see Table II, ranges from 81.1 psec (for 

multiplication) to 96.5 psec (for addition). This shows that the processing power of a single func- 

tional unit of the Cray/2 is comparable to the processing power of the 16384 processors of the 

MPP. However, much of the overhead is not included in this comparison: memory access cost on 

the Cray/2, data transfers on the MPP, and so on. 

This experiment showed that by reordering the computations we were able to implement the 

relaxation scheme on three different architectures with no major modifications. It also showed that 

two different algorithms, Gaussian elimination and cyclic elimination, were used to solve the tridi- 

agonal equations on the three architectures; the two algorithms were chosen to exploit the parallel- 

ism available on these architectures. The algorithm exploits multiple granularities of parallelism. 

The algorithm vectorized quite well on the Cray/2. A fine grained parallelism, involving sets of 

single arithmetic operations executed in parallel, is obtained on the MPP. Parallelism at higher 

level, large grained, is exploited on the Fled32 by executing several program units in parallel. 



28 

The performance model on the MPP was fairly accurate on predicting the execution times of 

the algorithm. The performance model on the Fled32 showed the impact of various overheads on 

the performance of the algorithm. The performance model on the Crayl2 was based on predicting 

the execution costs of separate operations. This model is used to identify the major costs of the 

algorithm and reproduced the measured results with an error of at most 30%. 

The ease and difficulty in using a machine is always a matter of interest. The Cray/2 is rela- 

tively easy to use as a vector machine. Existing codes that were written for serial machines can 

always run on vector machines. Vectorizing the unvectorized inner loops will improve the perfor- 

mance of the code. Unlike parallel machines, vector machines do not have the problem of "either 

you get it or not". The Fled32 is not hard to use, except for the unavailability of debugging tools 

which is a problem for many MKMD machines (a synchronization problem could cause a program 

to die). On the other hand, the MPP is not a user-friendly system. The size of the PE memory is 

almost always an issue. h4PP Pascal does not permit vector operations on the array nor does it 

allow extraction of an element of a parallel array. The MCU has 64 Kbytes of program memory. 

This memory can take up to about 1500 lines of MPP Pascal code. This means that larger codes 

can not run on the MPP. Finally, input/output is somewhat clumsy on the MPP. However, other 

machines with architectures similar to the MPP may not have the same problems that the MPP 

does. 

There is one further observation of interest. This algorithm can be implemented concurrently 

on four processors of the CrayR (multitasking). The code will be similar to the Fled32 version 

except that all of the variables should be stored in the main memory; the local memory on the 

Cray/2 is used only to store scalar temporaries. Adapting this algorithm to a local memory mul- 

tiprocessor with a hypercube topology should be relatively easy. A high efficiency is predicted in 

this case because all data transfers are to nearest neighbors and their cost should be very small 

compared to the computation cost. . 



29 

References 

Batcher, K. E., "Design of a Massively Parallel Processor," IEEE Trans. Computers, Vol. 
C-29, Sept. 1980, pp. 836-840. 

Bokhari, S. H., "Multiprocessing the Sieve of Eratosthenes," Computer, Vol. 20, No. 4, 
April 1987, pp. 50-58. 

Crockett, T. W., "Performance of Fortran Floating-Point Operations on the Fled32 Multi- 
computer," ICASE Interim Rep. No. 4, NASA Langley Research Center, Hampton, VA, 
August 1987. 

Fatoohi, R. A. and Grosch, C. E., "Solving the Cauchy-Riemann Equations on Parallel Com- 
puters," EASE Rep. No. 87-34, NASA Langley Research Center, Hampton, VA, May 1987. 

Fatoohi, R. A. and Grosch, C. E., "Implementation of an AD1 Method on Parallel Comput- 
ers," Journal of Scientific Computing, Vol. 2, No. 2, 1987, pp. 175-193. 

Flexible Computer Co., "Fled32 Multicomputer System Overview," Publication No. 030- 
oo00-002, 2nd ed., Dallas, TX, 1986. 

Gatski, T. B., Grosch, C. E., and Rose, M. E., "A Numerical Study of the Two-Dimensional 
Navier-Stokes Equations in Vorticity-Velocity Variables," J. Comput. Phys., Vol. 48, No. 1, 
1982, pp. 1-22. 

Goddard Space Flight Center, "MPP Pascal Programmer's Guide," Greenbelt, MD, June 
1987. 

Grosch, C. E., "Adapting a Navier-Stokes code to the ICLDAP," SIAM J. Scientific & Sta- 
tistical Computing, Vol. 8, No. 1, 1987, pp. s96-sl17. 

Heller, D., "A Survey of Parallel Algorithms in Numerical Linear Algebra," SIAM Review, 
Vol. 20, NO. 4, 1978, pp. 740-777. 

Hockney, R. W. and Jesshope, C. R., "Parallel Computers: Architecture, Programming and 
Algorithms," Adam Hilger, Bristol, England, 1981. 

Kaczmaxz, S., "Angenaherte auflosung von systemen hearer gleichungen," Bull. Acad. 
Polon, Sci Lett. A, 1937, pp. 355-357. 

Ortega, J. M. and Voigt, R. G., "Solution of Partial Differential Equations on vector and 
Parallel Computers," SIAM Review, Vol. 27, No. 2, June 1985, pp. 149-240. 



Report Documentation Page 

1 .  Report No. 
NASA CR-181614 
ICASE R e D O r t  NO. 88-5 

2. Government Accession No. 

4. Title and Subtitle 

IMPLEMENTATTON AND ANALYSIS OF A NAVIER-STOKES 
ALGORITHM ON PARALLEL COMPUTERS 

7 Authork) 

Raad A. Fatoohi  and C h e s t e r  E. Grosch 

9. Performing Organization Name and Address 

I n s t i t u t e  f o r  Computer A p p l i c a t f o n s  i n  Sc ience  

Mail S top  132C, NASA Langley Research C e n t e r  
and Eng inee r ing  

n. VA 3 3 6 6 5  - 5 7 7 5  
s n g  Agency Name and Address 

Nat iona l  Aeronau t i c s  and Space A d m i n i s t r a t i o n  
Langley Research Cen te r  
Hampton, VA 23665-5225 

5. Supplementary Notes 

3. Recipient's Catalog No. 

5. Report Date 

Janua ry  1988 

6. Performing Organization Code 

8. Performing Organization Report No. 

88-5 

10. Work Unit No. 

505-90-2 1-01 

11. Contract or Grant No. 

NAS 1-1 81 07 

13. Type of Report and Period Covered 

C o n t r a c t o r  Report  

14. Sponsoring Agency Code 

Langley Techn ica l  Monitor:  
Richard IT. Barnwell 

Submit ted t o  1988 I n t e r n a t i o n a l  
Conference on P a r a l l e l  P r o c e s s i n g  

F i n a l  Report  

6. Abstract 

T h i s  pape r  p r e s e n t s  t h e  r e s u l t s  o f  t h e  implementat ion of  a Navier-Stokes algo- 
r i t hm on t h r e e  p a r a l l e l / v e c t o r  computers. The o b j e c t  of t h i s  research i s  t o  
d e t e r m i n e  how w e l l ,  o r  p o o r l y ,  a s i n g l e  numerical  a l g o r i t h m  would map o n t o  t h r e e  
d i f f e r e n t  a r c h i t e c t u r e s .  The a l g o r i t h m  i s  a compact d i f f e r e n c e  scheme f o r  t h e  
s o l u t i o n  of t h e  i n c o m p r e s s i b l e ,  two-dimensional,  t ime dependent  Navier-Stokes 
e q u a t i o n s .  The computers were chosen so a s  t o  encompass a v a r i e t y  o f  a r c h i -  
t e c t u r e s .  They a r e :  t h e  MPP, a n  SIMD machine w i t h  16K b i t  s e r i a l  p r o c e s s o r s ;  
F l e x / 3 2 ,  an M I M D  machine with 20 p r o c e s s o r s ;  and Cray/2. The implementat ion of 
t h e  a l g o r i t h m  i s  d i s c u s s e d  i n  r e l a t i o n  t o  t h e s e  a r c h i t e c t u r e s  and measures o f  t h e  
performance on e a c h  machine are  g iven .  The b a s i c  comparison is  among SIMD in-  
s t r u c t i o n  p a r a l l e l € s m  on t h e  MPP, M I H D  p r o c e s s  p a r a l l e l i s m  on t h e  Flex/32,  and 
v e c t o r i z a t i o n  of a s e r i a l  code on the Cray/2. Simple performance models are used 
t o  d e s c r i b e  t h e  performance. These models h i g h l i g h t  t h e  b o t t l e n e c k s  and l i m i t i n g  
f a c t o r s  f o r  t h i s  a l g o r i t h m  on t h e s e  a r c h i t e c t u r e s .  F i n a l l y  c o n c l u s i o n s  are pre- 
s e n t e d .  

17. Key Words (Suggested by Authorls)) 

AD1 method, p a r a l l e l  p r o c e s s i n g ,  
p a r a l l e l  a l g o r i t h m s ,  performance 
a n a l y s i s ,  SOR method 

19. Security Classif. (of this report) I 20. Security Classif. (of 1 

18. Distribution Statement 

61 - Computer Programming and 

64 - Numerical Ana lys i s  
U n c l a s s i f i e d  - u n l i m l t e d  

Sof tware  

s page) 121. NO. of pages 122. Price 

I I *03 
Uncl ass i f i ed Unc 1 ass i f i ed 

. 

NASA FORM 16Z6 OCT 86 


